

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CODE OPTIMIZATION FOR THE CHOI-WILLIAMS
DISTRIBUTION FOR ELINT APPLICATIONS

by

Kenneth Barry Hollinger

December 2009

 Thesis Co-Advisors: Douglas J. Fouts
 Phillip E. Pace

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
Code Optimization for the Choi-Williams Algorithm for ELINT Applications
6. AUTHOR(S) Kenneth Barry Hollinger

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Joint Services Electronic Warfare
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Office of Naval Research
 Code 312
 Washington D.C.

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis investigates optimizing the speed of computation for computing the Choi-Williams
distribution. The Choi-Williams distribution is a way of simultaneously representing a signal in both the
time and frequency domains in a fashion that makes it possible to extract the waveform parameters of the
signal. The Choi-Williams distribution is particularly useful for analyzing low probability of intercept signals
for electronic intelligence applications. The usefulness of the distribution is directly correlated to the speed
of computation. This thesis examines methods in which the Choi-Williams distribution can be modified to
increase the speed of computation while still maintaining its ability to provide a clear picture of the signal
characteristics. By eliminating the computation of near zero terms of the Choi-Williams kernel function, the
speed of computation can be increased dramatically while still preserving, and improving, the time-
frequency characteristics. The optimizations developed in this thesis reduced the time to compute a 512
sample CWD from 6.9 seconds, to 0.0466 seconds on an Intel chip, Linux based PC—an increase in
speed of 147X.

15. NUMBER OF
PAGES

98

14. SUBJECT TERMS Choi-Williams Distribution, Signal Processing, Algorithm Optimization,
C programming, Low Probability of Intercept (LPI), Radar detection, Radar classification

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CODE OPTIMIZATION FOR THE CHOI-WILLIAMS DISTRIBUTION FOR ELINT
APPLICATIONS

Kenneth B. Hollinger

Captain, United States Marine Corps
B.S., University of Idaho, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2009

Author: Kenneth Barry Hollinger

Approved by: Douglas J. Fouts
Co-Advisor

Phillip E. Pace
Co-Advisor

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis investigates optimizing the speed of computation for computing

the Choi-Williams distribution. The Choi-Williams distribution is a way of

simultaneously representing a signal in both the time and frequency domains in a

fashion that makes it possible to extract the waveform parameters of the signal.

The Choi-Williams distribution is particularly useful for analyzing low probability of

intercept signals for electronic intelligence applications. The usefulness of the

distribution is directly correlated to the speed of computation. This thesis

examines methods in which the Choi-Williams distribution can be modified to

increase the speed of computation while still maintaining its ability to provide a

clear picture of the signal characteristics. By eliminating the computation of near

zero terms of the Choi-Williams kernel function, the speed of computation can be

increased dramatically while still preserving, and improving, the time-frequency

characteristics. The optimizations developed in this thesis reduced the time to

compute a 512 sample CWD from 6.9 seconds, to 0.0466 seconds on an Intel

chip, Linux based PC—an increase in speed of 147X.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. CHOI-WILLIAMS TIME-FREQUENCY DISTRIBUTION FOR

ELECTRONIC WARFARE... 1
B. RESEARCH OBJECTIVES.. 3
C. APPROACH AND PRINCIPLE CONTRIBUTIONS 3
D. THESIS OUTLINE.. 5

II. COMPUTATION METHOD... 7
A. CHOI-WILLIAMS DISTRIBUTION ... 7
B. COMPUTING THE DISTRIBUTION... 9

III. OPTIMIZATIONS FOR FASTER COMPUTATION....................................... 19
A. ELIMINATE COMPUTATIONS THAT WILL GIVE ZERO AS A

RESULT ... 19
B. CONJUGATE SYMMETRY ADVANTAGE .. 20
C. CUT AND SLICE.. 24
D. REDUCED FFT .. 31
E. AN OPTIMIZATION NOT REALIZED .. 34

IV. ERROR AND TIMING ANALYSIS.. 43
A. THE (NOT SO) DELETERIOUS EFFECTS OF CUT AND SLICE..... 43
B. TIMING RESULTS ... 68

V. CONCLUSION.. 71
A. BACKGROUND ... 71
B. RESULTS... 71
C. RECOMMENDATIONS FOR FUTURE WORK.................................. 71

APPENDIX. LPI SIGNAL GENERATION.. 73

LIST OF REFERENCES.. 75

INITIAL DISTRIBUTION LIST ... 77

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. 512 samples of Costas signal (real portion). 10
Figure 2.

A μ,n() for 8N = .. 11

Figure 3.

A μ,n() of Costas signal. .. 12

Figure 4. Choi-Williams kernel function 0= , N = 512 13
Figure 5. () (), , ,n A nφ μ μ for 0= . .. 14

Figure 6. ' (,)S n for 0= 15
Figure 7. The discrete CWD for 0= 16
Figure 8. Yellow line shows location of CWD for 0= in the time-frequency

distribution. ... 16
Figure 9. Plot of Choi-Williams processed Costas signal, SNR = 0dB 17
Figure 10. A summary of the steps to compute the CWD.................................... 18
Figure 11.

A μ,n() for 8N = 19

Figure 12.

A μ,n() for 8N = 21

Figure 13. Choi-Williams kernel function 0= , N = 512 24
Figure 14. Choi-Williams kernel function 0= , N = 512 25
Figure 15. Choi-Williams kernel function 0= , N = 512 25
Figure 16. Evaluation of the Cut method on the Costas frequency hopping

signal. ... 27
Figure 17. Evaluation of the Slice method on the Costas frequency hopping

signal. ... 28
Figure 18. Comparison of reduced computation and full computation results. 29
Figure 19. The kernel function with Cut = 32, Slice = 32. 30
Figure 20. 8-point FFT structure [From 13]... 31
Figure 21. Modified FFT [modified From 13]. ... 32
Figure 22. 0.01σ = 36
Figure 23. 0.1σ = 36
Figure 24. σ = 1. .. 37
Figure 25. σ = 2.77258872224 = 4ln(2) ... 37
Figure 26. 10σ = . .. 37
Figure 27. 100σ = . .. 38
Figure 28. 1000σ = . .. 38
Figure 29. 10,000σ = 38
Figure 30. Rounded kernel function, σ = 4 ln 2(). .. 39
Figure 31. Comparison of the rounded kernel function, σ = 4 ln 2(), with the

unrounded kernel function. ... 40
Figure 32. Comparing rounded to unrounded version, σ = 4 ln 2(). 40
Figure 33. Figure Map ... 44

 x

Figure 34. Cut and Slice results for FMCW, signal only, including a stem plot
of the error when compared to the original (top left). 45

Figure 35. Cut and Slice results for FMCW, 0 dB , including a stem plot of the
error when compared to the original (top left). 46

Figure 36. Cut and Slice results for FMCW, −6 dB , including a stem plot of the
error when compared to the original (top left). 47

Figure 37. Cut and Slice results for P1, signal only, including a stem plot of the
error when compared to the original (top left). 48

Figure 38. Cut and Slice results for P1, 0 dB , including a stem plot of the error
when compared to the original (top left). .. 49

Figure 39. Cut and Slice results for P1, −6 dB , including a stem plot of the
error when compared to the original (top left). 50

Figure 40. Cut and Slice results for PT1, signal only, including a stem plot of
the error when compared to the original (top left). 51

Figure 41. Cut and Slice results for PT1, 0 dB , including a stem plot of the
error when compared to the original (top left). 52

Figure 42. Cut and Slice results for PT1, −6 dB , including a stem plot of the
error when compared to the original (top left). 53

Figure 43. Cut and Slice results for Costas, signal only, including a stem plot
of the error when compared to the original (top left). 54

Figure 44. Cut and Slice results for Costas, 0 dB , including a stem plot of the
error when compared to the original (top left). 55

Figure 45. Cut and Slice results for Costas, −6 dB , including a stem plot of the
error when compared to the original (top left). 56

Figure 46. Cut and Slice results for FSK/PSK, signal only, including a stem
plot of the error when compared to the original (top left). 57

Figure 47. Cut and Slice results for FSK/PSK, 0 dB , including a stem plot of
the error when compared to the original (top left). 58

Figure 48. Cut and Slice results for FSK/PSK, −6 dB , including a stem plot of
the error when compared to the original (top left). 59

Figure 49. Original vs. Optimized FMCW, signal only. .. 60
Figure 50. ()φ μ, , n for = 0 and = 200 .. 61

Figure 51.

A μ,n() for N = 8 .. 61

Figure 52. Highlighted original FMCW, signal only. ... 62
Figure 53. (,)HS n for = 0 and = 200 for unaltered CWD................................ 62
Figure 54. Close up of (,)HS n for = 0 and = 200 for unaltered CWD............. 63
Figure 55. (,)xCWD ω for = 0 and = 200 for unaltered CWD. 63
Figure 56. ()φ μ, , n for = 0 and = 200 , cut = slice = 32.................................. 64
Figure 57. Highlighted optimized FMCW, signal only. ... 65
Figure 58. (,)HS n for = 0 and = 200 , cut = slice = 32. 65
Figure 59. (,)xCWD ω for = 0 and = 200 , cut = slice = 32.............................. 66
Figure 60. Original and Optimized FMCW, signal only. 67

 xi

LIST OF TABLES

Table 1. Time in seconds of trial runs...xiv
Table 2. Order of inputs.. 34
Table 3. Time in seconds of trial runs... 69

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Low Probability of Intercept (LPI) emitters are the next evolution in radar

technology and represent a growing threat to operating forces, civilian targets,

and national security. The operational implementation of time-frequency signal

processing techniques such as the Choi-Williams distribution (CWD) are useful

for the detection and classification of these threat waveforms. The techniques,

however, are currently limited due to non-real-time computational constraints.

Developing a system that can detect and classify LPI emitters in real time is the

first step in developing countermeasures to this growing threat.

This thesis investigates developing a highly optimized algorithm for

computing the Choi-Williams distribution. Using a C code implementation as a

benchmark, an increase of over 100X in speed of computation was achieved. It

is shown that the optimizations also produce a clearer and more accurate picture

of the input signal characteristics. The algorithm developed for this thesis can be

ported to any platform. Many of the optimizations developed can be applied to

the computation of the Wigner-Ville distribution as well. This work is highly

applicable in the effort to develop LPI emitter signal detection and classification

techniques.

There are currently several signal processing algorithms, which are able to

provide time/frequency representations of an incoming signal. These signal

processing techniques are useful tools in the detection and classification of LPI

emitters; however, the long processing time it takes to use these techniques

prevents these techniques from being used in a real time system. The goal then

is to decrease the processing time to compute these algorithms.

The CWD is notable in its ability to provide a clear, human-readable, time-

frequency picture of an LPI signal that is simple to classify. The ability to

compute the Choi-Williams algorithm in real or near real time will be a significant

contribution in developing countermeasures to weapons systems utilizing LPI

emitters.

 xiv

Several optimizations are presented which can be used to modify the

Boasash algorithm, reducing the complexity and number of computations made.

The cumulative effect of utilizing these optimizations produces a hundred fold

increase in speed of computation of the Choi-Williams distribution. Some of the

optimizations made can also be used to increase the speed at which the Wigner-

Ville distribution (another signal processing algorithm) can be computed. These

optimizations also have the unintended effect of providing a clearer and more

accurate picture of an LPI signal.

To compare the final code (pipe.c) to the original code (choi.c from

[5]) five test runs were conducted for both the compiler un-optimized and

compiler-optimized versions of both programs. The trial runs were conducted on

an Intel chip, Linux based PC. Table 1 shows the results.

 From [5] From this work

 choi.c choi.c

(compiler

optimized)

pipe.c pipe.c

(compiler

optimized)

Trail 1 46.81 6.860 0.05442 0.04699

Trial 2 46.51 6.887 0.05445 0.04655

Trial 3 46.50 6.852 0.05457 0.04640

Trial 4 46.23 6.872 0.05470 0.04631

Trial 5 46.49 6.824 0.05426 0.04661

Average 46.51 6.859 .05448 .046572

Table 1. Time in seconds of trial runs.

The optimized version of the code produced an 854X increase in speed

over the original code. The optimized version of the code that was compiled

using an optimizing compiler produced a 147X increase in speed over the

compiler-optimized version of the original code.

 xv

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

BFM Butterfly Machine

CWD Choi-Williams Distribution

DFT Discrete Fourier Transform

ELINT Electronic Intelligence

EW Electronic Warfare

FFT Fast Fourier Transform

FMCW Frequency Modulated Continuous Wave

FPGA Field Programmable Gate Arrays

LPI Low Probability of Intercept

N Number of Samples

NPS Naval Postgraduate School

SNR Signal To Noise Ratio

WVD Wigner-Ville Distribution

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

Many thanks to Professor Fouts in allowing me a free hand in the

development of this thesis.

Many thanks to Professor Pace for his unwavering faith in my ability to

actually accomplish something.

Many thanks to Professors Borges and Daughtry for teaching me the math

skills necessary for this thesis.

Many thanks to Professors Loomis, Jenn, Fargues, Butler, and

Breitenbach for acting as sounding boards.

Many thanks to my son Gage for helping me decompress by battling

Murlocs.

Many thanks to my daughter, Haley, for listening to me prattle on about

my thesis.

Many thanks to Wes Simon for helping me talk to computers.

Many thanks to Mr. Briscoe at the NEX sandwich shop for his culinary

masterpieces: the bacon breakfast burrito, and the Briscoe’s Sockit-to-me

sandwich.

This work is supported by the Office of Naval Research Code 312,

Washington, D.C.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. CHOI-WILLIAMS TIME-FREQUENCY DISTRIBUTION FOR
ELECTRONIC WARFARE

Low Probability of Intercept (LPI) emitters are the next evolution in radar

technology and represent a growing threat to operating forces, civilian targets,

and national security. The development of techniques to automatically detect

and classify LPI emitters is of extremely high importance. Currently, US and

allied electronic warfare (EW) systems cannot detect or classify most of the new

types of LPI radar and communication systems that are currently being

developed and deployed by adversary nations. LPI systems utilize techniques

such as frequency hopping and direct sequence spread spectrum to avoid

detection. As more and more of these systems are deployed by potential

adversaries, U.S. and allied forces will be at greater and greater risk from high-

speed, sea-skimming, anti-ship cruise missiles and other weapons.

There are currently several signal processing algorithms that are able to

provide time-frequency representations of an incoming signal. These signal

processing techniques are useful tools in the detection and classification of LPI

emitters; however, the long processing time it takes to use these techniques

prevents these techniques from being used in a real time system. The goal then

is to decrease the processing time to compute these algorithms.

The Choi-Williams distribution (CWD) [1] is one of Cohen’s generalized

class of time-frequency distributions [2], which also includes the Wigner-Ville

distribution and the spectrogram. Cohen’s time-frequency distributions have been

the focus of extensive research and study. The CWD uses an exponential kernel

to reduce the magnitude of cross terms. This is an improvement over the

Wigner-Ville distribution, which simply has a kernel function of one and produces

large cross terms that can obscure the real signal. However, much of the

research done to improve the speed of computation of the Wigner-Ville

distribution is applicable to computing the CWD, as well as other time-frequency

 2

distributions based on Cohen’s generalized class. In particular the efficient

algorithm developed by Boasash and Black [3], has been key in an effort to

improve the speed of computation of the CWD using reconfigurable computers

[4], [5]. Other research has been done to compute the CWD using parallel

processing [6], [7]. Cardoso et al. [6], computed the CWD using a parallel

implementation on a transputer platform with five processors. They were able to

compute the CWD for 1024 samples in 20.96 ms. In [7], Barry used matrix

manipulation techniques to provide an intuitive approach that, when combined

with parallel processing, will improve the processing speed to allow real-time

calculations of the CWD.

Other efforts to improve the computation speed include the use of

instantaneous frequency [8], and the fast Hartley transform [9] in lieu of a Fast

Fourier Transform (FFT). In [8], Jones and Boasash investigated the spread of a

signal about its instantaneous frequency for several common time-frequency

distributions. Their efforts led to an adaptive algorithm that may be used to

improve the time-frequency resolution of multicomponent signals. In [9],

Narayanan and Prabhu found that computing Wigner-Ville distribution using the

Fast Hartley method was much faster than using an FFT method. This due to

considerably less multiplications and additions needed to compute the Fast

Hartley method.

Additional research in this field has been conducted in comparing the

resolution of various time-frequency distributions [10], and the development of

new tools for the interpretation and quantitative comparisons of high-resolution

time-frequency distributions [11]. In [10], it was found that the Choi-Williams

distribution is the most attractive for signals in which all components have

constant frequency content. In [11], Cunningham and Williams introduce some

new tools for the interpretation and quantitative comparison of high-resolution

time-frequency distributions.

The CWD is notable in its ability to provide a clear, visual, time frequency

picture of an LPI signal that is simple to classify. The ability to compute the Choi-

 3

Williams algorithm in real- or near real-time will be a significant contribution in

developing intercept receivers for LPI signal detection.

B. RESEARCH OBJECTIVES

The intent of this thesis work was to improve the speed with which the

CWD can be computed on the SRC-6 reconfigurable supercomputer. Some

initial work on this has been done [4], with limited results. The approach taken

was to first study what computations were being made by the computer, then

examine how to best format the computations to take advantage of the SRC-6’s

reprogrammable hardware.

C. APPROACH AND PRINCIPLE CONTRIBUTIONS

In studying the algorithm used (an implementation of the Boasash

algorithm), it was discovered that many multiplications by zero were taking place.

The algorithm was rewritten to eliminate these multiplications. Also, it was

discovered that in the original algorithm, many of the same calculations were

being done multiple times, such as computing of the weighting function (which

never changes) N times where N is the number of signal samples.

Next, it was discovered that the conjugate symmetry of the distribution

required only half of the distribution to be computed, then copied into the other

half with a change of sign for the imaginary portion of the complex number.

Eventually a method was found to fill the other half of the distribution with zeros.

It was at this time that other ways of representing the kernel (weighting) function

were investigated to see if using powers of two instead of the exponential

function would allow easier computation. This manipulation was determined to

not be useful for the C programming language, but was included in this thesis

because it could be useful when developing a hardware solution to these

algorithms.

When looking at three-dimensional plots of the kernel (weighting) function,

it was noted that a very high proportion of the weights were near zero, and that

 4

these weights contributed very little to the final result of the computation. A “cut

and slice” method was developed to test various ways of stripping out

computations that, while taking as much time as the other computations, would

make insignificant contributions to the final result of the distribution. It was found

that only a fraction of the computations need be computed to still produce

excellent results. These new modifications were coded into the original C code

and very significant speed gains were made.

It was also found that stripping out the low (near zero) weighted

contributions to the sum would make it possible to reduce the number of

computations needed to compute the FFT. An algorithm was developed for the

generalized Butterfly Machine (BFM), which reduced the layers of BFMs needed

for the FFT. This algorithm is directly applicable to the computation of zero-

padded FFTs. The FFT from the benchmark code [5], written by Prof.

Breitenbach, was modified with his permission to incorporate these new changes

and the total computation time of the CWD was again significantly reduced.

Next, an analysis was done to objectively determine the affects of

eliminating the computation of near zero terms in the weighted summations. As

would be expected, there is a strong correlation between the number of

computations eliminated and the departure in results from the unaltered CWD.

However, in many cases, the time-frequency picture appears smoother in the

CWD implemented using the “cut and slice” method than using the unaltered

CWD. For a signal that is changing frequencies with time (such as an LPI

signal), contributions to the frequency at time t by a sample taken at time t + τ

are increasingly irrelevant as τ increases, and in fact degrade the time

frequency picture. With further analysis it was found that the “cut and slice”

method greatly reduces the contribution of these irrelevant samples—reducing

clutter that obscures the true signal

Finally, all of the modifications were coded into the C programming

language in the most efficient manner as possible and the program was written

such that it could be easily ported to a pipelined system where each new sample

 5

produces a new CWD. The new code was run using the Upperman code [5] as a

benchmark. The new code ran 854 times as fast as the old code when run using

no compiler optimizations and 147 times faster when both sets of code were

optimized by the compiler. The optimized version of the code was able to

compute the CWD for a 512 sample signal in 46.6 ms on an Intel chip, Linux

based PC.

The approximate factor of 6 increase in speed improvement for the

compiler un-optimized version can be attributed to standard computer

engineering coding principles such as loop unrolling, minimized decision making,

and the reduction of redundant computations. The new code is highly optimized

to be ported to a hardware implementation of the CWD, as well as a

reconfigurable computer such as the SRC-6.

D. THESIS OUTLINE

Chapter II of this thesis provides a step by step implementation of the

Boasash algorithm, which is used to compute the CWD. It provides a breakdown

of the equations of the CWD, and provides a step by step breakdown of how the

distribution can be computed using the Boasash algorithm. It also provides

graphical representations of the affects of each stage of the computation, providing a

clear picture of what is happening to the signal at each stage of computation.

Chapter III steps through several modifications that can be made to the

algorithm. Each section shows the math behind the modification, how each

modification reduces the number of computations in the algorithm, and the result (if

any) on the final result of the distribution.

Chapter IV examines the cumulative effect of all the optimizations on the

distribution, documenting both the error produced by the optimizations and the

increase in processing speed achieved. It is shown that, in addition to the

hundred-fold increase in processing speed accomplished, the optimized

computing algorithm actually produces a more accurate representation of the LPI

signal. Chapter V provides the conclusions that can be drawn from the work

accomplished in this thesis.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. COMPUTATION METHOD

A. CHOI-WILLIAMS DISTRIBUTION

The CWD is one of a class of time-frequency distributions introduced by

Cohen. In discrete form, the CWD can be expressed as

 2(,) 2 () (,) j n
x

n
CWD W n S n e ωω

∞
−

=−∞

= ∑ (2.1)

where

2

2
()
4 /

2

1(,) () () *()
4 /

nS n W e x n x n
n

μ
σ

μ

μ μ μ
π σ

−∞ −

=−∞

= + −∑ (2.2)

and W (μ) is a uniform window that has a value of one for the range −M / 2

through / 2M , and ()W n is a uniform window that has a value of one for the

range −N / 2 through N / 2 and is zero elsewhere [1].

The above equations can be modified in order to tailor them to allow the

use of a standard FFT (Fast Fourier Transform) in calculating the distribution.

For the work described in this thesis, all examples will use data sets of N

samples where N is a power of two. Setting the summation windows over n

and μ to go from −N / 2 to N / 2 −1, and having realize the same range, will

cover all non-zero values in the distribution and will enable the use of the FFT.

This will be clearer in the following analysis.

Without loss of generality, the N samples are labeled x −N
2() through

x N
2 −1(). Equation (2.2) can now be expressed as

 ()
12

2

(,) (, ,) ,
N

N
S n n A n

μ

φ μ μ
−

=−

= ∑ (2.3)

where

A μ,n()= x(μ + n)x *(μ − n) (2.4)

 8

and

2

2
()
4 /

2

1(, ,)
4 /

nn e
n

μ
σφ μ

π σ

−
−

= (2.5)

Note that (2.5) is undefined for n = 0 . Using the substitutions

κ = μ
1

4n2 σ
⇒ dκ =

1
4n2 σ

dμ ⇒ dμ = 4n2 σdκ

note that

()μ μ
κσ σ

μ μ κ

κ

κ

σ
μ μ κ

π σ π σ π σ

π

−∞ ∞ ∞− −
−

=−∞ =−∞ =−∞

∞
−

=

= =

=

∫ ∫ ∫

∫

2 2

22 2

2

2
4 4

2 2 2

0

41 1
4 4 4

1 2

n n n
e d e d e d

n n n

e dk

Using the identity ex2

dx =
π
2x=0

∞

∫ [12]:

1
π

2 e−κ 2

dk
κ =0

∞

∫ =
2
π

π
2

= 1

This shows that (2.5) is a Gaussian distribution over μ , which has a variance of

zero for μ = when n = 0 . Using the sifting property:

1

(, , 0)
0

n
μ

φ μ
μ
=⎧

= = ⎨ ≠⎩

If we define the function '(,)S n to be (this is a generalization of the

equation used in the Boasash algorithm),

()

⎧ ≤ ≤ −
⎪
⎪= =⎨
⎪

− + ≤ ≤ −⎪⎩

(,) 0 12
' , 0 2

(,) 1 12

NS n n

NS n n

NS n N n N

In this way, (,)S n for n = −N
2 through N

2 −1 is mapped to ()' ,S n for n = 0

through N −1 . So (2.1) becomes:

 9

1
2

0
(,) 2 '(,)

N
j n

x
n

CWD S n e ωω
−

−

=

= ∑

Finally, this representation can be modified to fit the standard Fast Fourier

Transform (FFT) by making the substitution: ω = πk
N thus 2.1 becomes

1 2'

0
(,) 2 (,) 0,1,..., 1

nN j k
N

x
n

kCWD S n e k N
N

ππ − −

=

= = −∑ (2.6)

Note that transforming 2.1 into an FFT equation results in frequencies that

are double what they initially were. This effect can be nulled by simply halving

the values of the frequency axis in the plotted representations of the signal.

This section has shown how the discrete CWD is modified in order to

compute the distribution for an N sample window using an FFT. The next

section breaks down the Boasash algorithm into steps and shows the results of

performing each step on an example input signal.

B. COMPUTING THE DISTRIBUTION

This section details how to compute the CWD using the equations in the

previous section and shows an example of the resultant output for a Costas

frequency hopping signal with a signal to noise ratio (SNR) of 0 dB sampled

N = 512 times (Figure 1). The Appendix shows the details for the signals used in

this thesis.

 10

Figure 1. 512 samples of Costas signal (real portion).

The algorithm used to compute the CWD for a signal sampled N times

can be expressed in the following manner. First the N samples are stored in an

array. This gives us ()x k where

sample at time k 12 2()

0

N Nk
x k

elsewhere

⎧ − ≤ ≤ −⎪= ⎨
⎪⎩

 (2.7)

Next, the function

A μ,n() can be written to an N by N array. For

illustration purposes, Figure 2 shows an example of how A μ,n() for an N = 8

sample signal would be arrayed.

 11

 μ \ n 0 1 2 3 -4 -3 -2 -1

3 x(3)∙x(3)* x(4)∙x(2)* x(5)∙x(1)* x(6)∙x(0)* x(‐1)∙x(7)* x(0)∙x(6)* x(1)∙x(5)* x(2)∙x(4)*

2 x(2)∙x(2)* x(3)∙x(1)* x(4)∙x(0)* x(5)∙x(‐1)* x(‐2)∙x(6)* x(‐1)∙x(5)* x(0)∙x(4)* x(1)∙x(3)*

1 x(1)∙x(1)* x(2)∙x(0)* x(3)∙x(‐1)* x(4)∙x(‐2)* x(‐3)∙x(5)* x(‐2)∙x(4)* X(‐1)∙x(3)* x(0)∙x(2)*
0 x(0)∙x(0)* x(1)∙x(‐1)* x(2)∙x(‐2)* x(3)∙x(‐3)* x(‐4)∙x(4)* x(‐3)∙x(3)* x(‐2)∙x(2)* x(‐1)∙x(1)*
-1 x(‐1)∙x(‐1)* x(0)∙x(‐2)* x(1)∙x(‐3)* x(2)∙x(‐4)* x(‐5)∙x(3)* x(‐4)∙x(2)* x(‐3)∙x(1)* x(‐2)∙x(0)*
-2 x(‐2)∙x(‐2)* x(‐1)∙x(‐3)* x(0)∙x(‐4)* x(1)∙x(‐5)* x(‐6)∙x(2)* x(‐5)∙x(1)* x(‐4)∙x(0)* x(‐3)∙x(‐1)*
-3 x(‐3)∙x(‐3)* x(‐2)∙x(‐4)* x(‐1)∙x(‐5)* x(0)∙x(‐6)* x(‐7)∙x(1)* x(‐6)∙x(0)* x(‐5)∙x(‐1)* x(‐4)∙x(‐2)*
-4 x(‐4)∙x(‐4)* x(‐3)∙x(‐5)* x(‐2)∙x(‐6)* x(‐1)∙x(‐7)* x(‐8)∙x(0)* x(‐7)∙x(‐1)* x(‐6)∙x(‐2)* x(‐5)∙x(‐3)*

Figure 2. A μ,n() for 8N =

Note that in Figure 2, several of the boxes are grey. These boxes are

highlighted because one or both terms in the box falls outside of the sample

window (x(−4) through x(3)) and the result of the complex multiply will be zero.

Figure 3 shows the absolute values of what becomes of our Costas signal

once it has been processed in the same manner and mapped into a 512 by 512

array. Note, that

A μ,n()is not dependent upon the parameter . This array will

be used for all subsequent calculations and need only be computed once.

 12

Figure 3. A μ,n() of Costas signal.

The remaining steps in the process of computing the CWD will be

repeated for all . For this example, 256 255− ≤ ≤ . The following figures are

used to illustrate the algorithm and are all computed with 0= , a time in the

middle of the sampled signal.

First, a matrix is created to represent the kernel function (), ,nφ μ shown

in (2.5). Figure 4 shows the result for all μ and n , with 1σ = , and 0= . The

value of σ (sigma) is a constant, and will be discussed in more detail later.

 13

Figure 4. Choi-Williams kernel function 0= , N = 512 .

Next, the array is weighted (multiplied) by the kernel function, producing

an array that represents () (), , ,n A nφ μ μ for all n and μ for the current iteration,

of . Figure (5) shows the kernel function for = 0 .

 14

Figure 5. () (), , ,n A nφ μ μ for 0= .

Next, each column is summed producing a 1 x N array representing

() ()
12

2

'(,) , , ,
N

N
S n n A n

μ

φ μ μ
−

=−

= ∑

for 0= . Figure 6 shows the '(,)S n for 0= (the results of the summation

over μ).

 15

Figure 6. ' (,)S n for 0= .

Finally, an FFT is used to compute the frequency for the current and

saved to an array that represents

1 2'

0
(,) 2 (,)

nN j k
N

x
n

kCWD S n e
N

ππ − −

=

= ∑

for the current . Figure 7 shows the result of the FFT for 0= . Figure 8

depicts the entire time-frequency distribution for all . The red line shows the

proper place in the time-frequency plot for the 0= calculation. Notice that the

time-frequency plot shows the frequency crossing the 0= line to be 4000,

which reflects the frequency shown in Figure 7. The time-frequency plot is a top

down view of the results for all , with colors mapped so that high returns show

in red and low returns in blue.

 16

Figure 7. The discrete CWD for 0= .

Figure 8. Yellow line shows location of CWD for 0= in the time-frequency

distribution.

 17

When this algorithm is computed for all , the resulting array can be

plotted representing frequency as a function of time. The resulting plot, Figure 9,

provides a picture of the signal that is simple to analyze. The time-frequency plot

is a top down view of the results for all , with colors mapped so that high returns

show in red and low returns in blue.

Figure 9. Plot of Choi-Williams processed Costas signal, SNR = 0dB .

The algorithm expressed in this section was implemented in C code [4],

[5]. The average time to complete this algorithm for an 512N = sample was

approximately 46 seconds. This time was reduced to approximately 6 seconds

using compiler optimizations. Figure 10 shows a summary of this algorithm. The

next chapter steps through the optimizations that were used to accomplish this.

 18

1. The signal is sampled N times. 2. A μ,n() is computed.

3.

A μ,n() is weighted by the kernel

function.

4. The result is summed over μ .

5. Then fed through an FFT. 6. Steps 3 through 5 are computed for

all .

Figure 10. A summary of the steps to compute the CWD.

 19

III. OPTIMIZATIONS FOR FASTER COMPUTATION

A. ELIMINATE COMPUTATIONS THAT WILL GIVE ZERO AS A RESULT

Equation (2.7) states that all values for x(k) outside the range

− N

2 ≤ k ≤ N
2 −1 are equal to zero. The resulting array in Figure 11 is

functionally equivalent to the array in Figure 2. This reduces the number of

computations for the array by a factor of 2.

 μ \ n 0 1 2 3 -4 -3 -2 -1

3 x(3)∙x(3)* 0 0 0 0 0 0 0
2 x(2)∙x(2)* x(3)∙x(1)* 0 0 0 0 0 x(1)∙x(3)*

1 x(1)∙x(1)* x(2)∙x(0)* x(3)∙x(‐1)* 0 0 0 X(‐1)∙x(3)* x(0)∙x(2)*
0 x(0)∙x(0)* x(1)∙x(‐1)* x(2)∙x(‐2)* x(3)∙x(‐3)* 0 x(‐3)∙x(3)* x(‐2)∙x(2)* x(‐1)∙x(1)*
-1 x(‐1)∙x(‐1)* x(0)∙x(‐2)* x(1)∙x(‐3)* x(2)∙x(‐4)* 0 x(‐4)∙x(2)* x(‐3)∙x(1)* x(‐2)∙x(0)*
-2 x(‐2)∙x(‐2)* x(‐1)∙x(‐3)* x(0)∙x(‐4)* 0 0 0 x(‐4)∙x(0)* x(‐3)∙x(‐1)*
-3 x(‐3)∙x(‐3)* x(‐2)∙x(‐4)* 0 0 0 0 0 x(‐4)∙x(‐2)*

-4 x(‐4)∙x(‐4)* 0 0 0 0 0 0 0

Figure 11. A μ,n() for 8N = .

 20

B. CONJUGATE SYMMETRY ADVANTAGE

Analysis shows that

A μ,−n() is equal to the conjugate of

A μ,n(). That is,

for x1 = A+ jB and x2 = C + jD ;

x1 ⋅ x2
∗ = A+ jB()C − jD()= AC + BD()+ j BC − AD()

= AC + BD()− j BC − AD()⎡⎣ ⎤⎦
∗
= A− jB()C + jD()⎡⎣ ⎤⎦

∗

= x2 ⋅ x1
∗()∗

or

 x1 ⋅ x2
∗ = x2 ⋅ x1

∗()∗ (3.1)

So

A(μ,n) = A(μ,−n)⎡⎣ ⎤⎦
∗

for all n ≠ 0 . Also, note that the kernel function is strictly symmetric about n

2

2
()
4 /

2

1(, ,)
4 /

nn e
n

μ
σφ μ

π σ

−
−

=

so

() ()φ μ φ μ= −, , , ,n n

Therefore

 () () () ()φ μ μ φ μ μ⎡ ⎤= − −⎣ ⎦
*

, , , , , ,n A n n A n (3.2)

Finally

f (i)()∗
i= x

y

∑ = f (i)()
i= x

y

∑
⎡

⎣
⎢

⎤

⎦
⎥

∗

 (3.3)

and

 [](,) (,)S n S n ∗− = (3.4)

 21

and

''(,) (,)

for 1 12

S n S N n

N n N

∗
⎡ ⎤= −⎣ ⎦

+ ≤ ≤ −
 (3.5)

Since the array for '(,)S n is symmetrical in this way, only the values of

'(,)S n for

0 ≤ n ≤ N

2 −1 need be computed. Then, the conjugates of the

function for

1≤ n ≤ N

2 −1 can be reverse ordered and used as the results of the

function for

N

2 +1≤ n ≤ N −1. This reduces the calculations for '(,)S n by

another factor of two (for large values of N). The only cost in computing time is

the need to change the sign of the imaginary portion of the real number and copy

the appropriate values into the array. Figure 12 shows how A(μ,n) maps to

A(μ,−n)⎡⎣ ⎤⎦

∗
.

 μ \ n 0 1 2 3 -4 -3 -2 -1

3 x(3)∙x(3)*

2 x(2)∙x(2)* A A*
1 x(1)∙x(1)* B G G* B*
0 x(0)∙x(0)* C H K K* H* C*
-1 x(‐1)∙x(‐1)* D I L L* I* D*
-2 x(‐2)∙x(‐2)* E J J* E*
-3 x(‐3)∙x(‐3)* F F*
-4 x(‐4)∙x(‐4)*

Figure 12. A μ,n() for 8N = .

 22

The next optimization takes further advantage of the symmetric nature of

the CWD and will increase the speed of computation with no deleterious effects.

Note that (3.5) establishes the conjugate symmetricity of the function that is input

into the FFT:

''(,) (,)S n S N n
∗

⎡ ⎤= −⎣ ⎦

for

N

2 +1≤ n ≤ N −1. Taking a closer look at (2.6):

1 2'

0
(,) 2 (,)

nN j k
N

x
n

kCWD S n e
N

ππ − −

=

= ∑

the summation representing the Fourier transform of the input array may be

manipulated as follows. The summation can be broken into two parts.
11 122 2 2' ' '

0 0 2

(,) (,) (,)
Nn n nN Nj k j k j k

N N N

Nn n n

S n e S n e S n e
π π π

−− −− − −

= = =

= +∑ ∑ ∑

Taking further advantage of 3.5, the second term ends up being the conjugate of

the first term, minus the result of the function for 0n = .

1 122 2 2' ' '

12 2

1 2'

12

(,) (,) (,)2

0 (,)

Nn nN Nj k j k j k
N N N

N Nn n

nN j k
N

Nn

NS n e S e S n e

S N n e

π π π

π

− −− − −

= = +

− −∗

= +

= +

= + −

∑ ∑

∑

Using the substitution 'n N n= −
'1 12 2' '

1 ' 12 2

1 12 2(2 2) 2' '

1 1

(,) (, ')

(,) (,)

n N nN j k j k
N N

N Nn n

N Nn nj k k j k
N N

n n

S N n e S n e

S n e S n e

π π

π π π

−− − −∗ ∗

= + = −

− −
− − +∗ ∗

= =

− =

= =

∑ ∑

∑ ∑

or

*
11 22 2' '

12

(,) (,)
Nn nN j k j k

N N

N nn

S n e S n e
π π

−− − −

==

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

∑ ∑

 23

Since the summing of a complex number with its conjugate will equal double the

real portion of the number (A + A* = 2 Re{A}) and '(,0)S will always be a real

number, the total summation then becomes:

11 22 2' ' '

0 0
(,) 2 Re (,) (,0)

Nn nN j k j k
N N

n n
S n e S n e S

π π
−− − −

= =

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ (3.6)

This result can be used in the following way. A new function (,)HS n can be

defined as:

'1
2

'

(,) 0

(,) (,) 1 12
0

H

S n n
NS n S n n

elsewhere

⎧ =
⎪⎪= ≤ ≤ −⎨
⎪
⎪⎩

 (3.7)

The CWD then becomes:

1 2

0
(,) 4 (,)

nN j kH N
x

n

kCWD S n e
N

ππ − −

=

= ∑ (3.8)

Using this equation, the exact same real results are produced, but only the left

half of the input array need be computed. The imaginary part of the original

equation always, by definition, summed to zero. In the new equation, the

imaginary part is simply discarded. For 12
N n N≤ ≤ − , all input values into the

FFT are zero. This manipulation was verified using MATLAB and the

programming language C. The algorithm was modified, as described above, and

the exact same results were obtained.

The next section discusses the “cut and slice” optimization, which

eliminates the computation of near zero terms stemming from very small values

in the kernel function.

 24

C. CUT AND SLICE

All optimizations made up to this point have had no affect on the final

result of the computation. This next optimization changes the final result of the

computation. An analysis of the changes affected by this optimization is provided

in the next chapter.

Another way to vastly improve the speed with which the distribution can be

computed is to take advantage of the properties of the kernel. Figures 13

through 15 show that much of the kernel function appears to be near zero.

Figure 13. Choi-Williams kernel function 0= , N = 512 .

 25

Figure 14. Choi-Williams kernel function 0= , N = 512 .

Figure 15. Choi-Williams kernel function 0= , N = 512 .

 26

Indeed, looking at the kernel function again,
2

2
()
4 /

2

1(, ,)
4 /

nn e
n

μ
σφ μ

π σ

−
−

=

it can be seen that the further away from () 0μ − = and n = 0 , the closer the

kernel function gets to zero. Since any number multiplied by near zero will have

little contribution to a summing operation, it can be reasoned that eliminating the

calculations that will produce near zero results will reduce the computation time

while having little affect on the final result. An analysis was conducted to

subjectively measure the degradation in results of reducing near zero terms and

determine a threshold that does not degrade the results noticeably. A subjective

analysis was used instead of a deterministic one because the ability of this signal

processing technique to provide a clear picture of the signal cannot be

determined by any function.

To conduct this analysis, the weighting kernel function was first “cut.” The

variable “cut” was defined as the amount of columns surrounding the peak of the

kernel function that were used in the computation. For example, a “cut” of 256

would include the entire 512 columns. A cut of 128 would include the first 128

columns and the last 128 columns. The variable “slice” was used to eliminate

rows above and below the peak of the kernel function. A “slice” of 64 would

include the row with the peak of the weighting function and the 63 rows both

above and below the peak of the kernel function. First, the kernel was cut to find

a threshold where the picture began to degrade. As can be seen in Figure 16,

the picture is degraded noticeably for cut < 32. Note that, cut = 256, slice = 512,

is identical to the original computation.

 27

cut = 256, slice = 512; cut = 128; slice = 512

cut = 64, slice = 512; cut = 32; slice = 512

cut = 16, slice = 512; cut = 8; slice = 512

Figure 16. Evaluation of the Cut method on the Costas frequency hopping
signal.

 28

Figure 17 shows a similar analysis for “slice”. The subjective threshold for

degradation was determined visually to be slice = 32.

cut = 256 slice = 512 cut = 256 slice = 256

cut = 256 slice = 128 cut = 256 slice = 64

cut = 256 slice = 32 cut = 256 slice = 16

Figure 17. Evaluation of the Slice method on the Costas frequency hopping
signal.

 29

Next, cut and slice were conducted at the two thresholds at the same time

to verify that the effects of the two optimizations do not have a multiplicative

affect. Figure 18 shows that reducing the computations to thresholds of 32 rows

and 32 columns surrounding the peak of the kernel function produces an image

that is sufficiently similar to the full version as to allow the picture of the signal to

still be readable.

Cut = 32 Slice = 32

Cut = 256 Slice = 512 (Full Version)

Figure 18. Comparison of reduced computation and full computation results.

 30

Figure 18 shows the kernel function that has been cut and sliced. Since

all rows and columns more than 32 away from the peak of the function are zero,

and therefore produce a result of zero when multiplied by A μ,n(), these products

are simply not computed. In Figure 19, cut is the shorter axis, slice is the long

axis. Slice = 32 means 32 to either side of 0.

Figure 19. The kernel function with Cut = 32, Slice = 32.

The next section shows how the FFT algorithm can be modified to take

advantage of all the zeroed values within the kernel function.

 31

D. REDUCED FFT

The next optimization takes advantage of all the zeros produced by the

previous optimizations. This optimization increases the speed of the FFT

computation by 9
5 . Since, without this optimization, the FFT accounts for

roughly half of the total computation time for the CWD, this is significant

improvement.

Figure 20 shows a common way to implement an FFT using log2 n layers

of BFMs to implement an n point FFT. Figure 20 shows an eight point FFT

implemented with three layers of BFMs.

Figure 20. 8-point FFT structure [From 13].

In Figure 20, arrows joining at a circle indicate that two values are summed. The

various weighting terms shown represent the twiddle factors that are multiplied

where ()π= −exp 2k
NW j k N . The negative ones indicate that the arrow is

multiplied by a negative one. Figure 21 shows how the algorithm is altered when

all but the first two inputs (x(0) and x(1)) are made equal to zero.

 32

Figure 21. Modified FFT [modified From 13].

Notice that the first two layers of BFMs can be completely skipped and the inputs

can be fed directly into the third layer. This same affect works on FFTs of this

type for all sizes with the following conditions and effects:

1. For any FFT calculated for n inputs where log2 n is a whole number.

2. If every input following the first m values is equal to 0.

3. And 2log m is a whole number.

4. Then the m inputs can be fed directly into the log2

n
m
+1

⎛
⎝⎜

⎞
⎠⎟

th BFM layer of

the n point FFT.

5. Each input will be fed into n
m

adjacent inputs.

6. And the order of the inputs is in the order of the values represented by the

reversed order bit representations of the values zero through

 m −1represented in log2 m bits.

 33

For the example above:

1. n = 8 log2 n = 3

2. Every input past the first two inputs is zero.

3. m = 2 log2 m = 1

4. The first two values are fed directly into the log2

8
2
+1= 3rd layer of the 8-

point FFT.

5. Each input is fed into

8
2
= 4 adjacent inputs.

6. The values zero through 2 −1= 1 are represented in log2 2 = 1 bits. A bit

reversal is conducted (trivial in this case), and the order of input is

established by these reverse bit values (again in this case no reordering is

required).

For the purposes of implementing the above optimization for our 512 input FFT

with a “cut” of 32, limiting the input to only 32 values:

1. n = 512 log2 n = 9

2. Every input past the first 32 inputs is zero.

3. m = 32 log2 m = 5

4. The first 32 values are fed directly into the log2

512
32

−1= 5th layer of a 512

point FFT.

5. Each input is fed into

512
32

= 16 adjacent inputs.

6. The values zero though 31 are represented in 5 bits. A bit reversal is

conducted and the order of inputs is established by these reverse bit

values (see Table 2).

 34

0-31 Reversed

bit

Order of

inputs

0 00000 0

1 10000 16

2 01000 8

3 11000 24

4 00100 4

… … …

31 11111 31

Table 2. Order of inputs.

The next section shows an optimization that might be beneficial if the

CWD were computed using a reconfigurable computer.

E. AN OPTIMIZATION NOT REALIZED

The next optimization was not realized, due to the fact that implementation

using C code would probably provide a negligible, if any, increase in speed of

computation. It is, however, an interesting optimization in that it uses powers of

two, instead of the exponential function, making it a potentially powerful

optimization to use with reconfigurable computers. Also, this section takes a

closer look at the mysterious parameter known only as “sigma”.

From (2.5) we start with (, ,)nφ μ :

2

2
()
4 /

2

1(, ,)
4 /

nn e
n

μ
σφ μ

π σ

−
−

=

Using the identity

2log2 (x) = x

the following simplification can be made

 35

()
()2

242 2

2

log

4
2

1 2
4 4

ne

ne
n n

μ σ

μ σσ σ
π π

−⎛ ⎞
⎜ ⎟
⎜ ⎟−
⎜ ⎟−
⎝ ⎠=

then using the identity

logx yz = z logx y

the following simplification can be made

()

() ()

2

24 22
22

log
log

41 12 2
4 4

ne
e

n

n n

μ σ

μ σσ σ
π π

−
−

⎛ ⎞
⎜ ⎟
⎜ ⎟ −
⎜ ⎟ −
⎝ ⎠ =

then using the identity

logx y()= logz y()
logz x()

the same equation can be represented as follows:

() ()
() ()22

2 22

ln
log

ln(2)441 12 2
4 4

e
e

nn

n n

μ σμ σσ σ
π π

−−
−−

=

or finally

()22

22
()

4ln(2)4 /
2

1 1(, ,) 2
44 /

nnn e
nn

μ σμ
σ σφ μ

ππ σ

−− −−
= =

 36

 Before proceeding further, let us take a closer look at σ . Sigma changes

the distribution of the kernel function. Up until this point, all computations in this

thesis have been done with σ = 1 . Figures 22 through 29 represent the kernel

function for various values of σ and its affect upon the processing result of the

CWD, using our running example of a Costas frequency hopping signal with

 SNR = 0dB .

Figure 22. 0.01σ = .

Figure 23. 0.1σ = .

 37

Figure 24. σ = 1.

Figure 25. σ = 2.77258872224 = 4ln(2) .

Figure 26. 10σ = .

 38

Figure 27. 100σ = .

Figure 28. 1000σ = .

Figure 29. 10,000σ = .

 39

Notice that in Figure 24 for σ = 2.77258872224 = 4ln(2) (a constant), the

signal representation is good and the kernel function becomes:

()2 2

2 4ln(2)1 0.220635600153(, ,) 2 2
4

nnn
n n

μ σ μσφ μ
π

− −⎛ ⎞− −⎜ ⎟
⎝ ⎠= = (3.9)

Note that (3.9) provides the mathematically same results as (2.5) and Figure 25

with 2.77258872224σ = , using the original kernel function:

2

2
()
4 /

2

1(, ,)
4 /

nn e
n

μ
σφ μ

π σ

−
−

=

Figure 30 shows that if we round all values of the exponent term,

()()μ −
2

n , to the nearest integer, we get the following kernel function and

results for our running example of the Costas signal. Figure 31 shows a close-up

of the modified kernel function with its exponent rounded. Notice that the plot of

the rounded kernel function is not as smooth as the unrounded kernel function,

but that it still retains the same overall shape and characteristics.

Figure 30. Rounded kernel function, σ = 4 ln 2().

 40

Figure 31. Comparison of the rounded kernel function, σ = 4 ln 2(), with the

unrounded kernel function.

Although the effect of rounding the kernel function to the nearest power or

two is noticeable, the effects upon the output distribution are negligible. Figure

32 compares the two outputs generated for Figures 25 and 30. It is difficult to tell

the difference between the two.

Figure 32. Comparing rounded to unrounded version, σ = 4 ln 2().

 41

If the new rounded version is used, for every '(,)S n computed,

() ()' 1, ' , 2S n S n α+ = where α is some integer (equally applicable to

() () α+ =1, , 2H HS n S n). If IEEE floating point is used to represent the number,

then A μ,n() need only be weighted once by multiplying it by a kernel function.

Since the rest of the weighting kernel functions in a column are related by some

power of two, the mantissa of the floating point representation will remain the

same for all other weights. The other weights can be calculated by adding or

subtracting to the eight-bit exponent of the floating point representation. Since

there is no such single operation in the C programming language, to utilize this

method would involve masking out the eight-bit exponent, modifying it, and then

placing it back into the number. The benefits of this multiple instruction operation

over simply doing the multiplications are questionable. However, if a

reconfigurable computer is used to perform the operation, there is the potential

for substantial savings in computation time.

This is the last optimization examined. The next chapter takes a closer

look at the effects of the cut and slice optimization, detailed in Section C of this

chapter, and shows the overall improvement in computation speed attained by

utilizing the optimizations.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

IV. ERROR AND TIMING ANALYSIS

A. THE (NOT SO) DELETERIOUS EFFECTS OF CUT AND SLICE

In establishing the threshold for the “cut and slice” optimization, the author

used a subjective approach to determine how small the kernel function could be

cut and sliced without degrading the quality of the results. This section conducts

an objective analysis to show the effect of the cut and slice operation. Also, this

section shows the effects of the optimization on some common LPI signals to

determine the effect of the optimization on a range of signals at various signal to

noise (SNR) ratios.

Five common LPI signals are analyzed—each one at three different levels

of SNR: signal only (SNR = ∞ dB), SNR = 0 dB and SNR = −6 dB . Each of the

15 example signals were measured at cut = slice = 128, 64, 32, 16, and 8 (see

cut and slice section in the previous chapter for explanation of levels) and

compared to the results of the unaltered version of the CWD of the same signal.

 Error = median
CWD − CS

CWD
⎡

⎣
⎢

⎤

⎦
⎥ (4.1)

To compare each computation result to the original version, the absolute

value of the difference between the cut and slice (CS) version and the original

computation are measured at each of the 512 x 512 points in the array, and then

they are divided by the average value of all the points in the original array. Then

the median is taken (4.1).

 44

CWD

128

64

32

16

8

Figure 33. Figure Map

The results of the analysis are summarized in Figures 34 through 48

below. In each of the figures, there are six plots. The top left plot shows the

result of the unmodified version of the Choi-Williams computation. The plot to its

right is the result of the computation with cut = slice =128, which is the number of

columns and rows surrounding the peak of the kernel function, ()φ μ = =, 0n .

The plot below the original is for cut = slice = 64, and to that one’s right cut =

slice = 32. The two plots on the bottom are for cut = slice = 16, and cut = slice =

8. Figure 33 above summarizes the layout. At the bottom of each set of time-

frequency plots is a stem plot of the Error measured for each of the cut and slice

computations compared to the original.

Note that cut = slice = 32 was the threshold established for optimizing the

computation using the subjective approach and is the chosen threshold to use for

the optimized version of the algorithm.

The five signals examined are: Frequency Modulated Carrier Wave

(FMCW), Polyphase 1 (P1), Polytime 1 (PT1), Costas Frequency Hopping

(Costas), and Frequency Shift Keying/Phase Shift Keying (FSK/PSK).

 45

Figure 34. Cut and Slice results for FMCW, signal only, including a stem plot
of the error when compared to the original (top left).

 46

Figure 35. Cut and Slice results for FMCW, 0 dB , including a stem plot of the

error when compared to the original (top left).

 47

Figure 36. Cut and Slice results for FMCW, −6 dB , including a stem plot of the

error when compared to the original (top left).

 48

Figure 37. Cut and Slice results for P1, signal only, including a stem plot of the

error when compared to the original (top left).

 49

Figure 38. Cut and Slice results for P1, 0 dB , including a stem plot of the error

when compared to the original (top left).

 50

Figure 39. Cut and Slice results for P1, −6 dB , including a stem plot of the

error when compared to the original (top left).

 51

Figure 40. Cut and Slice results for PT1, signal only, including a stem plot of

the error when compared to the original (top left).

 52

Figure 41. Cut and Slice results for PT1, 0 dB , including a stem plot of the

error when compared to the original (top left).

 53

Figure 42. Cut and Slice results for PT1, −6 dB , including a stem plot of the

error when compared to the original (top left).

 54

Figure 43. Cut and Slice results for Costas, signal only, including a stem plot

of the error when compared to the original (top left).

 55

Figure 44. Cut and Slice results for Costas, 0 dB , including a stem plot of the

error when compared to the original (top left).

 56

Figure 45. Cut and Slice results for Costas, −6 dB , including a stem plot of the

error when compared to the original (top left).

 57

Figure 46. Cut and Slice results for FSK/PSK, signal only, including a stem

plot of the error when compared to the original (top left).

 58

Figure 47. Cut and Slice results for FSK/PSK, 0 dB , including a stem plot of

the error when compared to the original (top left).

 59

Figure 48. Cut and Slice results for FSK/PSK, −6 dB , including a stem plot of

the error when compared to the original (top left).

 60

As would be expected, in all cases in the above error plots, the more the

kernel function was cut and sliced down, the more error was introduced (using

the original distribution as the benchmark). Also, as would be hoped, the

distribution for cut = slice = 32 picture of the signal was not degraded

significantly. Interestingly, in many cases, the picture actually looks clearer. For

example, note in Figure 49 that for the FMCW, signal only, the optimized version

(for the rest of this thesis, optimized refers to the cut = slice = 32 version, and

original refers to the un-optimized version of the distribution) looks much clearer

than the original. If this is a signal only representation, why are there horizontal

lines across the picture?

Figure 49. Original vs. Optimized FMCW, signal only.

A horizontal line across the plot indicates that that frequency is present

throughout the entire sample. Figure 50 shows the kernel function for times

 = 0 and = 200 . Note, that for low values of n (the columns on the left side),

the Gaussian distribution has a low variance, but that at high values of n , the

Gaussian distribution quickly approaches being completely flat, giving near equal

representation to all values in the column.

 61

Figure 50. ()φ μ, , n for = 0 and = 200 .

Figure 51 shows that

A μ,n() (for N = 8), it can also be seen that for higher

values of n , the column represents data points multiplied together that are more

distant from each other in time.

 μ \ n 0 1 2 3 -4 -3 -2 -1

3 x(3)∙x(3)* 0 0 0 0 0 0 0
2 x(2)∙x(2)* x(3)∙x(1)* 0 0 0 0 0 x(1)∙x(3)*

1 x(1)∙x(1)* x(2)∙x(0)* x(3)∙x(‐1)* 0 0 0 X(‐1)∙x(3)* x(0)∙x(2)*
0 x(0)∙x(0)* x(1)∙x(‐1)* x(2)∙x(‐2)* x(3)∙x(‐3)* 0 x(‐3)∙x(3)* x(‐2)∙x(2)* x(‐1)∙x(1)*
-1 x(‐1)∙x(‐1)* x(0)∙x(‐2)* x(1)∙x(‐3)* x(2)∙x(‐4)* 0 x(‐4)∙x(2)* x(‐3)∙x(1)* x(‐2)∙x(0)*
-2 x(‐2)∙x(‐2)* x(‐1)∙x(‐3)* x(0)∙x(‐4)* 0 0 0 x(‐4)∙x(0)* x(‐3)∙x(‐1)*
-3 x(‐3)∙x(‐3)* x(‐2)∙x(‐4)* 0 0 0 0 0 x(‐4)∙x(‐2)*

-4 x(‐4)∙x(‐4)* 0 0 0 0 0 0 0

Figure 51. A μ,n() for N = 8 .

 62

Therefore, for higher instances of n , the summation over μ will provide

near equal representation for all samples multiplied by another sample that is 2n

in distance away—for all cases of .

Figure 52 shows the original FMCW, signal only, plot with the distributions

for = 0 and = 200 highlighted in yellow. Figure 53 shows (,)HS n for = 0

and = 200 . Figure 54 shows a close up of the same plot for 200 ≤ n ≤ 250 .

Figure 55 shows CWD for = 0 and = 200 .

Figure 52. Highlighted original FMCW, signal only.

Figure 53. (,)HS n for = 0 and = 200 for unaltered CWD.

 63

Figure 54. Close up of (,)HS n for = 0 and = 200 for unaltered CWD.

Figure 55. (,)xCWD ω for = 0 and = 200 for unaltered CWD.

 64

Note, that as expected from the previous analysis, (,)HS n produces

nearly identical results for high values of n and highly disparate values of , and

that these results are derived from samples multiplied by other samples that are

2n in distance away from each other. This is certainly not desired and is the

cause of the horizontal lines across the original distribution. Figures 56 through

59 below conduct the same analysis for the optimized version of the distribution.

Figure 56 shows the optimized kernel function for times = 0 and = 200 .

Figure 57 shows the optimized CWD for the FMCW, signal only, plot with the

distributions for = 0 and = 200 highlighted in yellow. Figure 58 shows

(,)HS n for = 0 and = 200 . Finally, Figure 59 shows the optimized CWD for

 = 0 and = 200 .

Figure 56. ()φ μ, , n for = 0 and = 200 , cut = slice = 32.

 65

Figure 57. Highlighted optimized FMCW, signal only.

Figure 58. (,)HS n for = 0 and = 200 , cut = slice = 32.

 66

Figure 59. (,)xCWD ω for = 0 and = 200 , cut = slice = 32.

Figure 60 shows three-dimensional representations of the CWD for both

the original and optimized versions.

 67

Figure 60. Original and Optimized FMCW, signal only.

 68

It can be concluded from this analysis that not only is the optimized

version faster and better looking, it portrays a more accurate depiction of the

signal as well.

B. TIMING RESULTS

Coding of the optimized version of the algorithm was conducted

incrementally. As each optimization was developed, it was verified using

MATLAB to empirically determine that the math was correct, and then the

optimizations were applied to the code in [5]. In comparison to the compiler un-

optimized version of the original code, using the symmetry optimization yielded

an approximately tenfold increase in speed. The cut and slice optimization

yielded another approximately tenfold increase in speed. With the permission of

Professor Breitenbach, the recursive FFT function authored by Professor

Breitenbach used in the original code was unrolled, placed within the code itself

and optimized in the same manner as described in the FFT optimization section

(Chapter II), increasing the speed of computation by approximately another

twofold. Other speed increases were realized by reducing redundant

computations. For instance, in the original code, the kernel function is essentially

recalculated N times. In the new code, the windowed (cut and sliced) kernel

function is pre-calculated before the timing starts. The original code was also de-

parameterized (the original was built to perform the distribution for any N where

N is a power of two) in order to wring out every possible speed increase.

Finally, it made sense to pipeline the code. In the original algorithm, it was

necessary to use all data samples for each and every iteration of , whereas for

the optimized version, each iteration depends only on samples near in time to .

In the final pipelined version, the arrays are preloaded with the samples needed

to compute the first computation (= −256), a new sample is written into the

array over the oldest sample in the array, and the computation is redone. The

priming of the pipeline before timing starts is cheating a little bit. However, it

should only account for 1 / 512 th of the speed increase over the original code.

 69

The pipelined version was developed with real, pipelined hardware in mind. The

final code should be easy to port to the SRC-6 supercomputer or other high

performance computing hardware.

To compare the final code (pipe.c) to the original code (choi.c from

[5]) five test runs were conducted for both the compiler un-optimized and

compiler-optimized versions of both programs. The compiler used was icc, and

the optimizations used were:

-O3 –tpp7 –xW –align –Zp16 –ipo –static

The trial runs were conducted on an Intel chip, Linux based PC. Table 3 shows

the results.

 From [5] From this work

 choi.c choi.c

(compiler

optimized)

pipe.c pipe.c

(compiler

optimized)

Trail 1 46.81 6.860 0.05442 0.04699

Trial 2 46.51 6.887 0.05445 0.04655

Trial 3 46.50 6.852 0.05457 0.04640

Trial 4 46.23 6.872 0.05470 0.04631

Trial 5 46.49 6.824 0.05426 0.04661

Average 46.51 6.859 .05448 .046572

Table 3. Time in seconds of trial runs.

The optimized version of the code produced an 854X increase in speed

over the original code. The optimized version of the code compiled with an

optimizing compiler produced a 147X increase in speed over the compiler

original version of the code compiled with an optimizing compiler.

 70

THIS PAGE INTENTIONALLY LEFT BANK

 71

V. CONCLUSION

A. BACKGROUND

The objective of this thesis was to improve the speed at which the CWD

could be computed on the SRC-6 reconfigurable supercomputer. Optimizing the

algorithm, prior to porting the code to the SRC-6, yielded enough work in both

quantity and level of difficulty to stand alone as the subject of this thesis. Also,

the optimizations developed in this thesis are applicable to any implementation of

the CWD.

B. RESULTS

By exploiting the symmetry of the CWD and eliminating the computation of

near zero terms, dramatic gains in computation speed were achieved. Further

gains were achieved by modifying the FFT to take advantage of zero terms. The

optimizations altered the results of the time-frequency distribution; however, the

altered results yield a more accurate time-frequency representation of the signal.

The optimized algorithm developed in this thesis is a significant step towards

developing a system that can identify and classify LPI signals in real time. This

algorithm is not platform specific, since developed using pure Mathematics. It

can be used to realize faster Choi-Williams calculations, with a better result, on

any platform.

C. RECOMMENDATIONS FOR FUTURE WORK

It is recommended that the effort to port this algorithm to the SRC-6 or

some other FPGA realization be continued. Particularly, the “Optimization Not

Realized” from Chapter III should yield a significant increase in speed if

implemented using an FPGA.

 72

THIS PAGE INTENTIONALLY LEFT BANK

 73

APPENDIX. LPI SIGNAL GENERATION

The example signals used for this thesis were taken from reference [14].

There were several signals generated by the LPI Toolbox used in this thesis.

Each signal is described in detail below. Each signal was generated with a signal

to noise ratio of 0 dB. The addition of noise generates more realistic results

without overwhelming the graph.

1) F_1_7_500_30_s.mat: FMCW signal with a ∞ dB SNR

2) F_1_7_500_30_0.mat: FMCW signal with a 0 dB SNR

3) F_1_7_500_30_-6.mat: FMCW signal with a −6 dB SNR

4) P1_1_7_8_1_s.mat: P1 signal with a ∞ dB SNR

5) P1_1_7_8_1_0.mat: P1 signal with a 0 dB SNR

6) P1_1_7_8_1_-6.mat: P1 signal with a −6 dB SNR

7) PT1_1_7_2_4_s.mat: PT1 signal with a ∞ dB SNR

8) PT1_1_7_2_4_0.mat: PT1 signal with a 0 dB SNR

9) PT1_1_7_2_4_-6.mat: PT1 signal with a −6 dB SNR

10) C_1_15_5000_s.mat: Costas signal with a ∞ dB SNR

11) C_1_15_5000_0.mat: Costas signal with a 0 dB SNR

12) C_1_15_5000_-6.mat: Costas signal with a −6 dB SNR

13) FSK_PSK_Costas_5_s.mat: FSK/PSK signal with a ∞ dB SNR

14) FSK_PSK_Costas_5_0.mat: FSK/PSK signal with a 0 dB SNR

15) FSK_PSK_Costas_5_-6.mat: FSK/PSK signal with a −6 dB SNR

More information on the use of the LPI Toolbox and the different LPI signals is

given in [4].

 74

To use these signals in the C programming environment, they were converted to

text files using the following code [5], [14].

%% %%%%%%%%%%%%%%%%%%%%% FMCW Code %%%%%%%%%%%%%%%%%%% %%
load H:\Thesis\Choi\Test_signals\F_1_7_250_20_0.mat
sig1 = [I Q];
save S:\thesis\Test_signals_txt\F_1_7_250_20_0.txt sig1 -ascii -double

%% %%%%%%%%%%%%%%%%%%%%% Frank Code %%%%%%%%%%%%%%%%%%% %%
load H:\Thesis\Choi\Test_signals\FR_1_7_4_1_0.mat
sig2 = [I Q];
save S:\thesis\Test_signals_txt\FR_1_7_4_1_0.txt sig2 -ascii -double

%% %%%%%%%%%%%%%%%%%%% Costas Code %%%%%%%%%%%%%%%%%%% %%
load H:\Thesis\Choi\Test_signals\C_1_15_5000_0.mat
sig3 = [I Q];
save S:\thesis\Test_signals_txt\C_1_15_5000_0.txt sig3 -ascii -double

%% %%%%%%%%%%%%%%% FSK/PSK Costas Code %%%%%%%%%%%%%%%% %%
load H:\Thesis\Choi\Test_signals\FSK_PSK_Costas_15_5_0.mat
sig4 = [I Q];
save S:\thesis\Test_signals_txt\FSK_PSK_Costas_15_5_0.txt sig4 -ascii
 -double

 75

LIST OF REFERENCES

[1] H. I. Choi and W. J. Williams, “Improved time-frequency representation of
multicomponent signals using exponential kernels,” IEEE trans. Acoust.,
Speech, Signal Processing, vol. 37, no. 6, pp. 862–871, 1989.

[2] L. Cohen, “Time-frequency distributions – A review,” Proc. IEEE, vol. 77,
no 7, pp 941–981, 1989.

[3] B. Boasash and P. J. Black, “An efficient real-time implementation of the
Wigner-Ville distribution,” IEEE trans. Acoust., Speech, Signal Processing,
vol. 35, pp. 1611–1618, 1987.

[4] G. J. Upperman, T.L.O.Upperman, D. Fouts, and P. Pace, “Efficient time-
frequency and bi-frequency signal processing on a reconfigurable
computer,” IEEE Asilomar Conf., pp. 176–180, 2008.

[5] T.L. Upperman, “ELINT Signal Processing Using Choi-Wiliiams
Distribution on Reconfigurable Computers for Detection and Classification
of LPI Emitters,” M.S. thesis, Dept. Electrical and Computer Eng., Naval
Postgraduate School, Monterey, CA, 2008.

[6] J. Cardoso, P. Fish, and M. Ruano, “Parallel implementation of a Choi-
Williams TFD for Doppler signal analysis”, IEEE proc. 20th conf. Eng. In
Med. and Bio. Soc., vol. 20, no 3, 1998.

[7] D. T. Barry, “Fast Calculation of the Choi-Williams Time-Frequency
Distribution,” in IEEE trans. Signal Processing, vol. 40, no. 2, Feb 1992,
pp. 450–455

[8] G. Jones, and B. Boasash, “Instantaneous frequency, instantaneous
bandwidth and the analysis of multicomponent signals,” IEEE trans.
Acoust., Speech, Signal Processing, vol. 5, pp. 2467–2470, 1990.

[9] S. Narayanan, and K. Prabhu, “New method of computing Wigner-Ville
distribution”, Electronics Letters, vol. 25, no 5, pp. 336–338, 2 March
1989.

[10] D. Jones and T. Parks, “A resolution comparison of several time-
frequency representations,” IEEE trans. Signal Processing, vol. 40, no. 2,
pp. 413–420, Feb 1992.

[11] G. Cunningham, and W. Williams, “Kernel decomposition of time-
frequency distributions,” IEEE trans. Signal Processing, vol. 42, no. 6, pp.
1425–1442, June 1994.

 76

[12] U.S. Department of Commerce, Handbook of Mathematical Functions
With Formulas, Graphs, and Mathematical Tables, National Bureau of
Standards, Applied Mathematics Series-55, Issued June 1964, Seventh
Printing, May 1968, with corrections.

[13] Oppenheim & Schafer, Digital Signal Processing, Prentice-Hall, 1975.

[14] P. E. Pace, Detecting and Classifying Low Probability of Intercept Radar,
2ns Edition, Artech House, Inc., Norwood, MA, 2009.

 77

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative

Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46

Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC

Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)

Camp Pendleton, California

7. Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

8. Douglas J. Fouts
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

9. Phillip E. Pace
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

10. Jon Butler

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

 78

11. Jerome Breitenbach
Electrical Engineering Department
Cal Poly State University
San Luis Obispo, California

12. Alfred Di Mattesa

Naval Research Laboratory
Code 5701

 Washington, D.C.

13. Peter Craig

Office of Naval Research
 Code 312
 Washington, D.C.

14. Jerry Fudge

Integrated Systems
 L-3 Communication Systems
 Greenville, Texas

15. Frank Boyle

Integrated Systems
 L-3 Communication Systems
 Greenville, Texas

